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Mathematical Epidemiology of Infectious Diseases

O. Diekmann

1. INTRODUCTION

Epidemiology is concerned with patterns in space and time of the occurrence
of disease. From the patterns one may infer causes, predict the future and
decide about the need for control measures. Many of such inferences require
sophisticated statistics. When disease i1s caused by an infective agent, there
1s a second way in which mathematics may help to gain insight. Then one
can build a mechanistic model for the spread of the agent and use it to
disentangle how this spread is influenced by various factors, such as contact
structure, population density, incubation period, etc. So one can do thought
experiments where real experiments are 1impossible or unethical. Here the
main mathematical tool is the qualitative theory of dynamical systems.

In a period of almost 30 years CWI has been actively engaged in the
modelling and analysis of the spread of infectious diseases in structured
populations of hosts. In the following we shall, in chronological order, very
briefly present the main highlights.

2. ORIENTATION ON THE CLASSICS

In 1971 CWI (then still called MC) started a (national and interdisciplinary)
‘Working Group on Biomathematics’ (as far as I know, the suggestion to
start activities in this area came from F. van der Blij, then a member of the
Board of Trustees; it was taken up by H.A. Lauwerier, P.J. van der Houwen,
G.M. Willems, two Hemker brothers and J. Grasman. This working group
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has been a very strong catalyser for the development of mathematical biol-
ogy 1n The Netherlands.

The subject of epidemiology was mainly brought in by J.A.J. Metz from
the Institute of Theoretical Biology of Leiden University, who himself was
imspired by J. Reddingius. Central was the work of W.0. Kermack and
A.G. McKendrick in 1927, an early milestone which was so much ahead of
1its time that forty vears later ‘generalizations’ were published which were
actually special cases.

Most likely inspired by R. Ross (who, incidentally, received the Nobel
prize for medicine in 1902 for his discovery that malaria is due to the Plas-
modium parasite, transmitted via mosquitoes, and not due to ‘bad air’, as
the name reflects) Kermack and McKendrick established in great generality
the occurrence of a threshold phenomenon: the introduction of an arbitrarily
small quantity of the infective agent in a demographically closed population
can only trigger an epidemic when a certain compound parameter R, ex-
ceeds one (in Section 4 below we shall say much more about Ry). From
a biological/medical point of view this, and the further characterisation of
Ry, 1s all that matters. From a mathematical point of view, the ‘arbitrar-
ily small’ is interesting and calls for a singular perturbation analysis. The
problem is non-standard because it concerns an infinite-dimensional dynam-
1cal system; in fact it requires that one first resolves how one should think
about initial value problems for Volterra integral equations of convolution
type; once this is settled one can formulate a result in terms of the one-
dimensionality of the intersection of an unstable manifold with a cone of
positive functions. A second point is that in the introduction phase the
deterministic approximation is not warranted, since numbers of infected are
not large. The link is via branching processes.

T'he applied math outlook of the late seventies on the classical mathe-
matical theory of epidemics is nicely summarized in the MC Tract 138 by
Lauwerier [3].

3. SPATIAL SPREAD

(ruided by advisor L.A. Peletier (just then moving from Delft University to
Leiden University) the applied math department organised in 1976 a col-
loquium on reaction-diffusion equations (see [1]) in which much attention
was given to the then brand-new results of D.G. Aronson and H.F. Wein-
berger on the asymptotic speed of propagation of disturbances ¢y. The idea
is simple. A steady state, let’s call it 0, is unstable and any (biologically)
realizable perturbation, no matter how small, gives rise to a sequence of
events (an orbit) which ends in a stable steady state, which we choose to
call co. Examples include fires (combustion theory), epidemics, rumours
and favourable mutant genes. How fast will the transition 0 — oo effec-
tively take place? Remarkably, the question becomes more meaningtul if
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we add a spatial dimension. Then we can look for travelling plane waves,
a speclal kind of self-similar solutions. (In a moving coordinate system the
temporal transients look like ‘frozen’ spatial transitions!) It turns out that
travelling plane waves exist for all speeds ¢ > ¢ for some ¢y and that this
minimal speed ¢q 1s the asymptotic speed of propagation in the sense that,
for compactly supported initial disturbances, an observer moving with a
speed higher than cg will be ahead of the transition, while an observer with
a lower speed than cy will, eventually, experience state oc. The following
argument explains intuitively why the minimal wave speed equals the ‘true’
speed. By manipulating the initial condition suitably one can produce trav-
elling waves in much the same way as one can create the illusion of steady
movement in an array of electric lights by turning them on and off appro-
priately. Only one thing can spoil this game: if we try to make the speed
too low the inherent ‘infection’ mechanism of our excitable medium takes
over. Therefore this inherent infection speed is exactly the lowest possible
wave speed!

The description above makes clear that application of these ideas to epi-
demic spread is all too natural. And in fact D.G. Kendall had already
analyzed a special case (it has been told that Kendall obtained his results
much earlier, but that he postponed publication because of the danger that
they would be helpful for planning biological warfare). At almost the same
time H.R. Thieme and Diekmann independently generalized the results of
Aronson-Weinberger and Kendall to the Volterra-Fredholm integral equa-
tions describing general epidemic models. But at a meeting organized by
the Dutch Society for Theoretical Biology, in which J.C. Zadoks of the
Laboratory for Phytopathology of the Agricultural University of Wagenin-
gen presented the results of extensive simulations with a model for fungus
disease spread by spore dispersal in various crops and formulated directly
In computer language, while the present author presented his results 1n a
theorem-proof style, a confusion of tongues of almost Babylonic dimension
prevented effective interaction. The abstract results were not at all opera-
tional.

The next step was taken at the Institute of Theoretical Biology of Leiden
University where F. van den Bosch, in a Ph.D. project guided by Metz,
learnt both languages and thereby pulled the communication barrier down.
In joint work with Zadoks and Metz he developed mechanistic submodels for
spore dispersal, introduced flexible yet parameter sparse kernels for spore
production, developed approximation formulae to determine ¢y from such
ingredients with a pocket calculator in negligible time and showed that the
model predictions match up to simulation studies and agree well with speeds
measured in field experiments. All is well that ends well.

But in fact this was not the end. An unexpected tollow-up started when
the ecologist R. Hengeveld heard about these results at the inaugural ad-
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dress in 1986 of the Metz-Diekmann tandem. Hengeveld was collecting and
analyzing data on animal range expansions and realized that, with the ap-
propriate mterpretation of the ingredients, the results would directly carry
over to this context. A fruitful collaboration originated.

4. T'HE BASIC REPRODUCTION RATIO Ry

For some time not much epidemiological happened at CWI. But then came
AIDS and the modelling of infectious diseases became internationally a hot
topic. The CWI group had no ambition to join this trend and continued
to concentrate on the population dynamics of structured populations. But
gradually 1t became clear that expertise in this area of structured popu-
lations could be used with great advantage when formulating and analyz-
ing complicated epidemic models. And then J.A.P. Heesterbeek embarked
upon a Ph.D. project and a colloquium was organized by him, Metz, Diek-
mann and two visitors, H. Inaba from Japan and M. Kretzschmar from Ger-
many. Most attention was given to the basic reproduction ratio Ry which.
in biological words, is defined as the expected number of secondary cases
produced by a typical infected individual during its entire infectious pe-
riod, 1n a population consisting of susceptibles only. The ‘typical’ indicates
that we take averages when individuals may differ in relevant aspects (e.g.
sexual behaviour). Sometimes it is easy to average, sometimes it requires
thought. In the present context the dynamics of disease transmission (i.e.
the interplay of susceptibility and infectivity) determines how the averaging
should be done, viz. by computing the positive eigenvector and eigenvalue
of a next-generation operator (recall the Perron-Frobenius theory of positive
matrices). All of this is explained in [2].

When Ry < 1 the infective agent cannot invade into a virgin population
of susceptible hosts, but when Ry > 1 it can. This is exactly Kermack-
McKendrick’s threshold condition. When we know, much to our chagrin, by
empirical fact that Ry > 1, the threshold condition seems just a somewhat
academic instrument to check our model. But once we realize that we
need to bring, by control measures, R, to a value below one in order to
eradicate an agent that is already established, it becomes clear that we
can use Ky as a practical instrument to estimate the effort needed for a
successful eradication campaign.

5. MODELLING THE FORCE OF INFECTION

More or less as an outgrowth of the colloquium CWI got a contract to pro-
vide mathematical modelling expertise for the project ‘Population dynamics
of infections’ at the Central Veterinary Institute in Lelystad (now ID-DLO)
which was started then by M.C.M. de Jong. At first the effort was directed
at making the abstract definition of R operational (in much the same way
as Van den Bosch had done with the asymptotic speed of spread cp) by de-



s - . ¥ - b R - Y - o f - . -
/\/\. ATHEAMATIC AL NI Y ) SIS SR IS ASE D
*}H’"
1 . eI - . ’ e ’ ! oo ;I:I I.l ! -
) . ) e R Lo [T .::ns,f' R e .:f‘.lé:”'—f}:é‘ﬁ'.ﬂ:'{"mﬁ o R . T s
ot e R LR e b S .s‘Mﬂg;ez.rae.Efrﬁf?f@w’?ﬁf‘?‘ﬂ““fwsﬁfﬂ{?):Vﬁ Al \ ../ﬁ" : e ! ' ;
A K & - s S r_:.r. Tt {\~_., [ 250 LT
. : _\q{éé’%rr- I

SR e h
ST

" e

bonreads

'.f'\‘JR.-.['-'._TF'.“.S':_‘.?1':'.*
e R s %
- __f}-r ?J\-.f cfa\-"" L

o e
R A

T
o

ek '
%@; G
A é Je ; /%ir@&‘ ’

o Mgl i
i Ry R "ﬁ?;ér LRI T T -
A Y - AR N T, e i ar
fy el P RN s
’fﬁ-‘a.’ﬁﬁfﬁ'-

s
or

b oo RRE el

_ - ¥
. - Tae ' " . -

CoE R R T

.J;-“Il‘:»_;’rrn"f;}'}i_lri'.ti _ R S

i

e ek reff, P _Ir"'- Lf{};_lf
TR L et sl g
:: A ié}g _73? 2 ,% e s
bl Ll

i p e

7|
; F)
i

T

sped el

e 4

SR R
LTI ¥ "r.‘-’-'-‘!;.

ll.-.l'r"-!"z
I CT R
v ¥

H L}
LR LAY

3'_;.
K I LT LT ’ W
£ i I:_
Sk '
.

o
v

ARy
"

o i h v K ' ' k] . L3 X _.‘s.j( f”’r e . -<,r - rrr P.I_' : . K R N - L AT Ity el

e ,{"l 2 B s g i it e T el : ,./ : I "%"f_r_ LR e

i { § ;: T : - i = ':T; g . 2 e \M\ % i e : ’F; ; . et % L 3 J. s ety 5 b : J*@j

L"f'ﬁﬁ%g;:;}«;f .AF(":‘Q FoT f‘f anr ; er ] _. I e 5:'; i f:;’ l,.{- ot ,_/%’. jl . ; i : : -: 3 T P "f\'{:a{ T, 1ot ; f \;"‘g‘ e et _ .F Jx}jf;} ot "".l ;E;-- :

L : S : Lt i AR e 7o ik %‘.@ % CE e \ A i i e fd SRS - . ; ﬁ%

e O s N e B E’ﬁﬁf"f’{" %{E S I B

E Ard s el I " P J St - 2HE g ] o EE 5 i ig i i 1] ; o o

:ﬁ{.,d{’* e : £ 5 o e 3 o W}' Eir i 4 ;

i

r'-\"{:.q er'r{;{éy,
f
2

0

i
i
e
i

AN
Sy

o

e
B el

'3

H i ; _ﬁ

Figure 1. Mathematical models developed at CWI help to understand how farm or

colony size affects the severity of an outbreak of a virus disease among pigs or seals.
Photo's coutesy ID-DLO Lelystad (left) and IBN-DLO Texel (right).

veloping an algorithm to compute it in a special setting (motivated by the
spread of Aujeszky’s Disease Virus (ADV) among pigs on farms where the
pigs are regularly shifted from one barn to another). simple question
‘When one tarm 1s twice as large as another, what difference does it make
for disease transmission?’) 1nitiated a new research direction, with field
observations, lab experiments and theoretical modelling reinforcing each
other.
The force of infection is by definition the probability per unit of time for
a susceptible individual to become infected. Many viruses are transported
from the mucus of one host to that of another by aerosoles when hosts ‘meet’.
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As a consequence one needs to model the contact process first, and then
superimpose the transmission of the virus. The situation resembles that
of chemical reactions, where molecules have to come close enough before
they can react. Inspired by that similarity, standard deterministic epidemic
models are in terms of densities and model the contact process by the law of
mass action (which, in the present context, asserts that the force of infection
is proportional to the density of infectives).

But 1n real life one often has to work with numbers, rather than densities.
Indeed, both the size of a pig farm and the size of a colony of seals (see also
figure 1) is usually expressed as the number of individuals that belong to
it, while the density is roughly the same for each farm or each colony (in
the latter case the evidence comes from aerial photos of seals sun bathing
on sand banks).

It 1s not difficult at all to formulate and analyze a model in which density
1s a given constant, while population size is variable (over populations and,
possibly, in the course of time). The first test on data from a classical
experiment of Greenwood in 1936 (with mice suffering from Pasteurella
murts, and living in a network of cages that was enlarged when population
size Increased) was inconclusive: the model with the per capita number of
contacts per unit of time independent of population size, and the one for
which this number was proportional to population size, could be made to
fit the data with roughly the same accuracy. (Incidentally, this work was
performed at the Isaac Newton Institute in Cambridge, as part of a special
programme on mathematical epidemiology.

This finding prompted ID-DLO to perform experiments with ADV in
groups of pigs, a large one in a large stable and a small one in a corre-
spondingly smaller stable. Here the outcome was fortunately very clear:
the hypothesis of proportionality of contact rate with population size had
to be rejected.

Another convincing argument was found in the data about the spread of
Phocine Distemper Virus (PDV) during the 1988 epidemic in the coastal wa-
ters of Northern-Europe: the final size appeared to be independent of colony
size (an observation which had puzzled researchers applying the ‘standard’
model in which contact rate is proportional to population size.

Thus a combination of modelling considerations, mathematical analysis,
experiments and observations helped to disentangle some aspects of the
complicated relation between mechanisms at the individual level and phe-
nomena at the population level.

6. COMMUNICATION AND EDUCATION

It cannot be denied that a gap exists between general abstract mathemat-
iIcal theory and specific concrete real life situations. But one can try to
make 1t smaller by organizing repeated exchanges of information about mo-
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tivation, problems, ideas, data, methods, etc. Thus in 1995 a course on
epidemic models was organized at CWI by Diekmann, Heesterbeek (now
at ID-GLW), De Jong (ID-DLO), Kretzschmar (now at RIVM) and Metz.
Participants came from all over the country and had backgrounds covering
plant pathology, veterinary science as well as human epidemiology. Their
number ranged from 40 at the beginning to 20 at the very end. The plan
1s to elaborate the notes to a book, hopefully with D. Mollison from Edin-
burgh as a sixth author and stochastic conscience. This book will then be
the culmination of CWTI’s involvement in the development of mathematical
epidemiology during a long period.
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